Chapter 4	2-Player Game Preparation Flow Chart

Flow chart before the game starts:

� EMBED SmartDraw.2 ���

Figure 1-4-1	Game Preparation Flow Chart (Sheet 1 of 2)�
	Figure 1-4-1	Game Preparation Flow Chart (Sheet 2 of 2)

Flowchart after the game starts:

� EMBED SmartDraw.2 ���

Data to be sent by the Master is stored in (SB) once, and is sent to the Slave at the same time as (SC) is set to $81. Simultaneously , the Master receives the Slave’s data, and the Slave is interrupted by SIO and sets (current) data to sent to the Master.

In fact, data sent by the Slave was stored at the previous interruption; therefore, it is delayed for one cycle against the current Slave data.

In the same way, the Master is interrupted by SIO, and sets (current) data to be sent to the Slave. Data sent by the Master is delayed for one cycle againt current Master data since this data was stored at the previous interruption. (It is possible to fit data by adjusting the other player’s data and delaying each current data.)

�
Chapter 5	2-Player V-Blank Wait Program

This program is based on concepts somewhat different from those used in existing communication methods, and is free from the problems inherent to those methods. The features of this program are given as follows:

Communications are guaranteed to succeed regardless of the programmer’s ability.�

Each frame corresponds to a 1 - 14 byte transmission.�

The master/slave relationship alternates after each transmission.

Items 2 and 3, in particular, have been previously unavailable.

The time required by the Game Boy to complete one communication is approximately 1msec. Therefore, a V-blank occurs after 15 communications, limiting the maximum number of communications to 15. The number of communications decreases when the main program takes up too much time, and is close to over-processing. If over-processing is unavoidable, program two frames as one game screen. The time required for SIO Interrupt is approximately 250 msec using the unmodified sample program, and 15 communications take approximately 3.7 ~ 3.8 msec. The main program must be 12 msec or less for 14 communications. The time allowed for one screen display (one frame) is (12 msec + 3.7 msec) or 15.7 msec. (The sample program carries out one more communication than required, i.e. 15 communications are actually made when 14 valid communications are transmitted or received. Hence the maximun number of valid communications is 14.)

This communication program can be used without further changes when two frames are programmed as one game screen. When a V-blank occurs before the program is complete (COMM END = 1), the two frames automatically operate as one game screen. Should over-processing temporarily occur in one of the Game Boys, only at that time are the two frames treated by both Game Boy’s as one game screen. Hence, even if V-blanks occur independently in both Game Boy’s, a communication miss or data gap will not result.

Item 3 is a method for preventing a reception error. A transmitter becomes a receiver after each transmission. You cannot receive data untill you have made a transmission, and you begin transmitting data only after receiving data. The other processor is a receiver when you transmit. However, Multiple Interrupts (EI) should take place during V-blank. Also, data cannot be received during DMA transmissions, so a 175 msec wait period occurs prior to transmissions ((SC is set to $81). Because EI is taking place, V-blank may be extended. Avoid making V-blank excessively long.

�
5.1		Application

Although this program is easy to use, several precautions must be observed. The first precaution given below must be observed during operations, and the subsequent three precautions involve the initial setting for using the sample program and how to use the received data. Please read these carefully in order to avoid using the program incorrectly.

5.2		Operations

The main program must end before a communication is completed, even though this may be cumbersome and complicated. In this program, (MAIN END) becomes “1” when the main program ends. also, when the necessary number of communications for each frame are completed, (COMM END) becomes “1”. (MAIN END) must become “1” before (COMM END) does. Otherwise, the communication will not work. For example, let’s say that 10 communications are made per 1 frame. The time required for communications is approximately 11 msec. The main program must end within 11msec, beginning with the first communication at the start of the main program, and including all interrupt time. When the main program does not end within 11 msec, transmit dummy data to extend the communication time (increasing the number of communications), or delay the first communication slightly in order to delay the end time. (When the first communication is started 3 msec after the main program is started and 10 communications are needed, the communications end in approximately 15 msec. Hence, the length of the main program can be extended to 15 msec.) However, to prevent over-processing, the first communication cannot be delayed more than 4 msec for 10 communications. Over-processing will occur each time the first communication is delayed 4 msec or more, and the communication program will automatically treat two frames as one game screen. While this is not unacceptable, it doubles the processing speed, and if not used with discretion, could cause the game to become unacceptably slow.

When there are few communications and the communication time is short, start the first communication after the main program has ended, or when there is no excess time, start the initial communications 1 ~ 2 msec before the end of the main program. (As long as these conditions are met, a communication miss absolutely should not occur.)

�
� EMBED SmartDraw.2 ���

Figure 1-5-1	Communication Time

You might be tempted to think that, under the above method, you can exchange the end code when the main program has ended, and forcibly extend the communication up to that point. However, since the two V-blank’s are not synchronized, this is not as easy. (Approximately 1 communication miss occurs for every 10,000 ~ 50,000 communications.)

�
5.3	Initial Setting for Sample Program and Using Received Data

First, use an equal statement and secondly, secure RAM. The necessary buffer is the one written in SAMPLE20.DMG. Care must be taken to always secure R DATA DUMMY before R DATA and S DATA DUMMY after S DATA. The number of each buffer is the number of bytes you want to transmit +1 (If 10 communications are needed for each game frame, 11 must be secured. An explanation of why one additional buffer is needed will not be given here. It is sufficient at this point to remember that 11 communications are automatically carried out when 10 communications are needed because of the nature of the program.)

Next, specify the number of communications (TIMES) with program SETTEI routine contained in the common subroutine for communications. (Input “10”if you wish to make 10 communications for 1 game. Indicate the number of communications you wish to make. There is no need to increase the number by 1.)

Program in such a way that the data you wish to transmit is stored sequentially starting from S1 DATA. Received data is automatically stored sequentially starting from R1 DATA. (Data to be transmitted is temporarily transferred to SDATA, and subsequently transmitted. Data which is received is first received in R DATA, and subsequently transferred to R1 DATA. The data transfer from S1 DATA to S DATA, and from R DATA to R1 DATA, are automatically performed by SIO INT.) When the data is used, R1 DATA ~ should be used for the received data, and SW1 DATA ~ should be used for your own data. SW1 DATA contains your data re-stored according to received data (Your data is delayed two cycles and re-stored to compensate for transmission time lag. “Two cycles” refers to two cycles of the main program.) Buffers other than S1 DATA, R1 DAT, and SW1 DATA (such as S DATA, R DATA,, SW DATA, etc.) should not be interfered with by the main program. Data storage, transmission, and reception are completely automatic and carried out by SIO INT.

5.4		Caution

This program is a sample. You may build it into your program; however, we will not be held responsible for any problems which may be caused by this program. Use caution when using the program.

A sample program disk is included with this manual. The disk contains the following programs:

SAMPLE20.DMG	Sample communication program.

SAMPLE2.DMG	Test program using the sample communication program.

			This program uses 10-byte communication for each game frame.

			(The number of communications may have been modified.)

Other:			Programs necessary for SAMPLE2.DMG

Note:

This communication program was designed for two Game Boy’s which carry out extensive communications utilizing the V-blank waiting scheme, depending on the number of communications. However, this may not be the optimal program to use. For example, if achieving communication is more important, you can simplify the program by returning to the beginning of the main program after completing one game frame after the necessary communication is over, without using a V-blank wait. This could lead to the V-blank, as with other interrupts, appearing unexpectedly in the main program. The effect of this would be minimal, however. In addition, one Game Boy can be programmed for a V-blank wait, while the other incorporates a communication end wait.

This sample program can be readily changed to optimize the communication operation. You are encouraged to revise it to whatever form best enhances your program.

�
Figure 1-5-2	Flow Chart 1, Main Program

� EMBED SmartDraw.2 ����
Figure 1-5-3	SELE (Sheet 1 of 2)

� EMBED SmartDraw.2 ����
Figure 1-5-3	SELE (Sheet 2 of 2)

� EMBED SmartDraw.2 ����
Figure 1-5-4	SIO Interrupt (Sheet 1 of 4)

� EMBED SmartDraw.2 ����
Figure 1-5-4	SIO Interrupt (Sheet 2 of 4)

� EMBED SmartDraw.2 ����
Figure 1-5-4	SIO Interrupt (Sheet 3 of 4)

� EMBED SmartDraw.2 ����
Figure 1-5-4	SIO Interrupt (Sheet 4 of 4)

� EMBED SmartDraw.2 ����

Credits:

“Game Boy 2-Player Game Preparation Flow Chart and

2-Player V-Blank Wait Program” (version 1.0) was brought to you

by NoComply and F.H.

Document reproduced (painfully!) by F.H. (I’m interested in reproducing

anything from the SNES’ Development Manual; anyone care to contribute any

documents?)
