
Fachhochschule Karlsruhe
University of Technology

Department of Sensor Systems Technology

‚The Game Boy Group‘

THE GAME BOY PROJECT

FH KARLSRUHE - UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF SENSOR SYSTEMS TECHNOLOGY

'THE GAME BOY PROJECT'

T A B L E O F C O N T E N T S

0. Introduction Page 4

0.1. The Game Boy - only a rusty game console ? Page 4

0.2. Who are we ? Page 5

1. What is inside the Game Boy Page 6

1.1. Technical Details Page 6

1.2. .Address Overview Page 9

1.3. Memory Mapping Page 11

1.4. Cartridge types Page 11

2. The Project Idea Page 13

2.1. What is missing in the GB-hardware ? Page 13

3. Building the hardware Page 14

3.1. How to connect an Eprom Page 14

3.1.1. The GB-Adapter Page 15

3.2. The 8255a PI/O - Chip Page 17

3.3. How to get the right hardware address Page 19

3.4. The GB-I/O interface board Page 20

4. Creating the Software Page 22

4.1. Software (development) Tools Page 22

4.1.1. GBBasic Page 22

4.1.2. GBDK Page 22

4.1.3. GBDEV Studio Page 23

4.1.4. NO$GMB Page 23

4.1.5. GBTD & GBMB Page 23

4.2. First steps using GB-Basic Page 24

4.3. The program Page 25

5. APPENDIX Page 26

5.1. References Page 26

5.2. Downloads Page 26

5.2.1. Layouts Page 26

5.2.2. Software tools Page 27

© 'The Game Boy Group' Page 1

FH KARLSRUHE - UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF SENSOR SYSTEMS TECHNOLOGY

'THE GAME BOY PROJECT'

F I G U R E I N D E X

Figure 0: the ready etched PI/O-board Page 3

Figure 1: GB Pocket series Page 4

Figure 2: 'The Game Boy Group' Mirko, Steffen, Rony, Marc (left to
right)

Page 5

Figure 3: General hardware schematic Page 7

Figure 4: Game Boy Internals (CPU section) Page 8

Figure 5: address overview Page 9

Figure 0: more detailed addresses overview Page 10

Figure 1: Inside a cartridge (Type 10h) Page 11

Figure 2: Game Boy with adapter & ROM Page 13

Figure 3: GameLink- and GamePak-connector pinout Page 14

Figure 4: Wiring diagram for a 32kB EPROM Page 15

Figure 5: Board layout for the GB-Adapter Page 16

Figure 6: GB Adapter J1 pinout Page 16

Figure 7: Block diagram of a 82C55A Page 17

Figure 8: The control word for port definition Page 18

Figure 9: Wiring diagram for the device switching logic Page 19

Figure 10: PI/O-Board J1 pinout Page 20

Figure 17: GB-I/O interface board layout Page 21

Figure 18: GBBasic accessing the 82C55A Page 24

Figure 19: Screen shot of the testing program Page 25

T A B L E I N D E X

Table 0: Game Boy features Page 4

Table 1: Technical Details Page 6

Table 2: Different possible cartridge configurations Page 12

Table 3: Parts for the GB-I/O interface board Page 20

© 'The Game Boy Group' Page 2

FH KARLSRUHE - UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF SENSOR SYSTEMS TECHNOLOGY

'THE GAME BOY PROJECT'

ABSTRACT

This document provides detailed constructional
information for the realisation of three 8 bit
bidirectional parallel ports in a Nintendo1

Game Boy2 cartridge. Only limited hardware
knowledge is required, but elementary
laboratory equipment is expected. To rebuild
the shown cartridges a manufacturing
capability for PCBs is required with an
programming capability for EPROM or Flash.
The job should be done in about less than 15h.

Figure 0: the ready etched PI/O-board

1 Nintendo is a registrated trademark of Nintendo Co., LTD.
2 Game Boy and Game Boy color are registrated trademarks of Nintendo Co., LTD.

© 'The Game Boy Group' Page 3

FH KARLSRUHE - UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF SENSOR SYSTEMS TECHNOLOGY

'THE GAME BOY PROJECT'

0. INTRODUCTION

This document was written to aid in the development of hardware and software for
use with the Nintendo Game Boy . It provides a guide to the known hardware
information pertaining to the hand held Game Boy console. Also included is an 8-
bit parallel port example project using an HarrisTM 82C55A in an add in GB-
cartridge. Complete constructional details including PCB layout plans are
provided.

Figure 1: GB Pocket series

0.1. THE GAME BOY - ONLY A RUSTY GAME CONSOLE ?

Years ago I received a Nintendo Game Boy as a birthday present and had a lot of
fun playing games with it. As the years passed I grew up and forgot about the little
console as it gathered dust on a shelf. One day in `97 it caught my eye and seeing it
from an engineering viewpoint I realized that it had more potential beyond playing
games due to a wealth of attributes and features including the following.

äý gray scale or color
display

äýgood software development tools
available as freeware!

äýZ80 based system äýsimple keyboard

äýnot that slow (8 MHz) äýportable

äýready to use äýdevelopment support by cartridge
usage

ä low cost äýstereo sound system

äýserial port äýRAM & ROM support

Table 0: Game Boy features

I realized that this combination of features could form an ideal basis for many
applications which would however require additional hardware and the relevant
software. I searched the Internet and found further information which reinforced
my own feelings and prompted me to try and instigate a project based on the Game
Boy as part of my university course. My own enthusiasm was shared by several
fellow students and so 'The Game Boy Group' was formed.

© 'The Game Boy Group' Page 4

FH KARLSRUHE - UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF SENSOR SYSTEMS TECHNOLOGY

'THE GAME BOY PROJECT'

0.2. WHO ARE WE ?

All six team members are former fifth Semester students studying Sensor-Systems-
Technology at Karlsruhe University of Technology. In the fifth semester all
students have the opportunity to work in small groups on an electronics project.
After convincing our professor that the basic idea of a project based around the
Game Boy was viable, planning started. Several ideas were considered ranging
from a small multimeter up to an oscilloscope. In the end it was decided to realize
the hardware for an 8 bit parallel port together with the relevant software which
would form a basis for future extensions.

The work was divided between the team members as follows:
p searching for information in the WWW: Marc Rawer, Andreas Schmack
p hardware development and build: Marc Rawer, Mirko Smuk
p software development: Steffen Kratochwill
p presentation in the WWW: Marc Rawer, Andreas Schmack
p documentation: Ronny Tomschitz
p manufacturing boards (& playing GB): Uwe Hill
p project supervisor: Prof. Dr. Michael Bantel
p continued support: Marc.Rawer@gmx.de

Figure 2: 'The Game Boy Group'
Mirko, Steffen, Rony, Marc (left to right)

© 'The Game Boy Group' Page 5

FH KARLSRUHE - UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF SENSOR SYSTEMS TECHNOLOGY

'THE GAME BOY PROJECT'

1. WHAT IS INSIDE THE GAME BOY

The Game Boy is a portable device with simple operation. The user interface
comprises four buttons, a joypad, integrated four color gray scale screen (color
with the 'Game Boy Color'3) and a speaker. Stereo sound is available from the
headphone jack. The internal hardware includes a Z80 processor derivative
together with system RAM and ROM.
These features make the Game Boy ideal for menu controlled applications.
Programming a home telephone system for example would be much easier using
the Game Boy LCD and joypad than using the telephone pad.

1.1. TECHNICAL DETAILS

The following table provides more detailed technical information on the hardware
inside the Game Boy:

CPU: 8-bit Z80-like CPU running at 4.194304MHz

BUSES: 8-bit data-BUS, 16-bit address-BUS

RAM: 8kB/32kB4 internal (CGB, GBP / GBC)
also 8kB adressroom for external RAM

Video RAM: 8kB/16kB internal (CGB, GBP / GBC)

ROM: 32kByte reserved in addressroom for external ROM

Sound: 4 channels. Each of which can be mapped either to the left or
to the right or to both speakers.

Video: Display: Reflective LCD 160x144 dots (physically)
Colors: 4 shades of gray (GBC: max. 56 of 32768)
Sprites: 40 sprites (8x8 / 8x16)

Com: One serial port with 8kbps5

Power: Classic: 6 Volts, 0.7 Watts, 4 AA Batteries - 35 hours
Pocket: 3 Volts, 0.9 Watts, 2 AAA Batteries - about 25
hours
color: 3 Volts, 0.3 Watts, 2 AA Batteries - ??

Table 1: Technical Details

3 Note: GB= Game Boy; CGB= classic GB; GBP= GB-Pocket; GBC= GB Color
4 Note: B= Byte; b= bit; kB= kilo Byte; kb= kilobit
5 Note: kbps= kilo bit per second

© 'The Game Boy Group' Page 6

FH KARLSRUHE - UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF SENSOR SYSTEMS TECHNOLOGY

'THE GAME BOY PROJECT'

Further information can be found in „gbspec.txt [1]“, titled „Everything You
Always Wanted To Know About Game Boy but were afraid to ask“ (also known
as the '-PAN-/Anthrox'-Document). It is one of the best sources of information for
both hardware and software including useful algorithims and common
problems/pitfalls.

Figure 3: General hardware schematic

Figure 3 shows a schematic of the Game Boy internal hardware. Starting from the
left, there are the buttons and joypad, the serial port, an oscillator, the speakers,
the CPU and the main memory. On the lower side the connector to the cartridge is
shown.

For further information on the Game Boy internal hardware and logic see the
schematic drawn by Jeff Frohwein [2] on the next page.

© 'The Game Boy Group' Page 7

FH KARLSRUHE - UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF SENSOR SYSTEMS TECHNOLOGY

'THE GAME BOY PROJECT'

© 'The Game Boy Group' Page 8

Figure 4: Game Boy Internals (CPU section)

FH KARLSRUHE - UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF SENSOR SYSTEMS TECHNOLOGY

'THE GAME BOY PROJECT'

1.2. ADDRESS OVERVIEW

Figure 5: address overview

As described under 1.1 Technical details the Game Boy has a 16-bit address-BUS.
Giving an addressable range of 65535 Byte (or 64kB). All hardware components
of the Game Boy including RAM, ROM, Video RAM and I /O Ports are memory
mapped as shown below.

Figure 5 shows the general definition for hardware devices. The 32K area between
0000h and 7FFFh is the "user program area" where the program ROM is located.
The user program area is divided into home & fixed home .

Above this area the video RAM is situated from 8000h to 9FFFh (8kByte). On top
of this is the work RAM area from A000h to FFFFh. The address space from
A000h to C000h can be used for externally located RAM in a cartridge.

© 'The Game Boy Group' Page 9

FH KARLSRUHE - UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF SENSOR SYSTEMS TECHNOLOGY

'THE GAME BOY PROJECT'

Figure 0: more detailed addresses overview

Figure 0 shows a more detailed overview of the hardware addresses. Further
information on address definition can be found in "gbspec.txt [1]“ ("Reserved
Memory Locations").

The user program area consists of home and fixed home blocks each of these being
16kByte in length. These memory blocks are called "pages" or "banks" (see 1.3
Memory mapping for more information). The '.gb'-files will always be 2^x pages in
length as checksumming takes place on a 16kByte block basis.

A user program starts in the 'fixed home' page 00. Small programs in a 16 kByte
ROM run entirely in this space. Larger programs of up to 32 kByte using a 32
kByte ROM flow over into the home page 01.

To facilitate programs requiring larger ROMs without causing addressing conflict
by going outside of the 32K Byte user program area the memory bank controller
(MBC) provides a means of mapping further contiguous 16kByte pages into the
home page 01 area.

© 'The Game Boy Group' Page 10

FH KARLSRUHE - UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF SENSOR SYSTEMS TECHNOLOGY

'THE GAME BOY PROJECT'

1.3. MEMORY MAPPING

The basic Game Boy design foresees only 32 kByte of user program area. This is
divided into two 16 kByte pages, a fixed home page and a home page. To allow
the use of program ROMs larger than the physical address space a controller is
used which "maps" each additional 16 kByte page into the home address space as
shown in Figure 5. This process is called 'memory mapping' (or bank switching). It
is similar to the method used under DOS when accessing expanded memory. The
Z80 has only 16 address bits whereas the ROM has more, depending on its
capacity (1 for 64kB, 2for 128kB and so on). To access a page the page number is
loaded into the control register of the MBC which is mapped into the home
address space. The MBC will then blend the selected page into the home-area by
providing the required address mapping. The memory bank controllers used in
Game Boy cartridges also support RAM mapping to the external work RAM
location (see Figure 5). The quantity of RAM and ROM pages mapped into the
specific address space depend on the MBC used an the RAM or ROM on the
cartridge itself.

1.4. CARTRIDGE TYPES

Figure 1 shows the inside of a cartridge. It seems to be a type 10h-cartridge with
RAM on the lower left, ROM on the lower right, a battery above, MBC3 in the
upper region and a timer in the upper left. The pins of the connector start at the left
with VCC (pin 1) and end on the right with the GND (pin 32). For more detail see
section 3.1‘How to connect an Eprom‘.

Figure 1: Inside a cartridge
(Type 10h)

© 'The Game Boy Group' Page 11

FH KARLSRUHE - UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF SENSOR SYSTEMS TECHNOLOGY

'THE GAME BOY PROJECT'

There are different types of Game Boy cartridges available. These types vary
mainly in their RAM/ROM addressability and may be classified into several
categories. The information on the cartridge type will be found (or must be placed)
at address 0147h of the ROM; ROM and RAM size at 0148h and 0149h. Table 2
shows the different setup available (01/99). For further information see gbspec.txt
[1]: "Cartridge type".

147h Cartridge type 147h Cartridge type

00h ROM ONLY 12h ROM+MBC3+RAM

01h ROM+MBC1 13h ROM+MBC3+RAM+BATT

02h ROM+MBC1+RAM 19h ROM+MBC5

03h ROM+MBC1+RAM+BATT 1Ah ROM+MBC5+RAM

05h ROM+MBC2 1Bh ROM+MBC5+RAM+BATT

06h ROM+MBC2+BATTERY 1Ch ROM+MBC5+RUMBLE

08h ROM+RAM 1Dh ROM+MBC5+RUMBLE+SRAM

09h ROM+RAM+BATTERY 1Eh ROM+MBC5+RUMBLE+SRAM+BT

0Bh ROM+MMM01 1Fh Pocket Camera

0Ch ROM+MMM01+SRAM FDh Bandai TAMA5

0Dh ROM+MMM01+SRAM+BATT FEh Hudson HuC-3

0Fh ROM+MBC3+TIMER+BATT FFh Hudson HuC-1

10h ROM+MBC3+TIMER+RAM+BATT

11h ROM+MBC3

Table 2: Different possible cartridge configurations

© 'The Game Boy Group' Page 12

FH KARLSRUHE - UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF SENSOR SYSTEMS TECHNOLOGY

'THE GAME BOY PROJECT'

2. THE PROJECT IDEA

The idea is to connect other devices to the Game Boy. Usually this can be
accomplished by using standard input/output interfaces called ports. These ports
are 'pins' to connect external devices to data-, address- and control-buses. The
parallel port should be accessed as easily as a RAM or ROM, to keep
programming simple.

2.1. WHAT IS MISSING IN THE GB-HARDWARE ?

The Game Boy already has a serial port which could be used if there weren't two
major problems. The first is that the data flow-rate on serial ports is slow. The
second is that the ‚game-link port‘ does not seem to support any standard protocol
for data interchange. There is little documentation on this ‚link port‘ (see
gbspec.txt [1]). If it shall be used custom protocols must be developed.
(Note: for programing it might be handy that the link port is the only port in the
GB hardware having it's own interrupt)

This best performance for connecting external hardware is achieved with an 8 bit
parallel port. This is the basic idea which will be discussed in paragraph 3.0
Building the hardware.

Figure 2: Game Boy with adapter & ROM

© 'The Game Boy Group' Page 13

FH KARLSRUHE - UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF SENSOR SYSTEMS TECHNOLOGY

'THE GAME BOY PROJECT'

3. BUILDING THE HARDWARE

This section covers the design and build of the parallel port. It includes general
details on the required ROM interfacing to the Game Boy. The GB-Adapter is a
cartridge supporting the addition of 32k*8 and 64k*86 EPROMs7.

The capability of the standard programmable I/O chip 82C55A will be considered
and the GB-I/O parallel port project circuit diagram described. A ready-to-etch
layout for the printed circuit board is included as part of the design.

3.1. HOW TO CONNECT AN EPROM

The very first step in developing software for the Game Game Boy is to connect
the required program memory to the 'Gamepak Edge Connector' (GEC). This can
be done in different ways. One possibility is to take an old cartridge (maybe with
an MBC1), solder the ROM out and connect all of the data and address to an
EPROM.

A more professional way (if you can build/etch boards) is to make an adapter
yourself. For this purpose you will need to know how to connect an EPROM to
the Game Boy.

Figure 3: GameLink- and GamePak-connector pinout

On the right of Figure 3 is a view of a cartridge connector as seen from the Game
Boy slot (the text on the cartridge is on the upper side). The picture shows the
pinout of the cartridge and should be used for further reference.

6 In this special case there is no MBC used. The switching is performed by a hardware switch.
7 Only the term EPROM will be used. PROMs EPROMs OTP-EPROMs having the same

pinout may also be used. Flashs and EEPROMs have nearly the same pinout whereby they
require a different programming method.

© 'The Game Boy Group' Page 14

FH KARLSRUHE - UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF SENSOR SYSTEMS TECHNOLOGY

'THE GAME BOY PROJECT'

Figure 4: Wiring diagram for a 32kB EPROM

Figure 4 shows the wiring diagram for an 32k*8 EPROM. Address and data lines
are connected directly. The power for the EPROM (Vpp) can be obtained from pin
1 (Vcc) of the GEC. Ground (GND) is connected to pin 32 (GND) of the GEC. A
bit more tricky are the chip enable (/CE) and output enable (/OE). They are
connected to read (/RD) and write (/WR) respectively. Notice for further
development that all these signals are low active. To access the lower or upper half
of a 64k*8 EPROM simply use a jumper or switch to connect A15 of the EPROM
either with GND or Vcc. Any CMOS EPROM witch an access time of less than
120ns may be used.

3.1.1. THE GB-ADAPTER

The GB-Adapter is a simple adapter from the ‚Gamepak Edge Connector‘ (GEC)
to a 28 pin DIP socket or an 34pin header. It supports 256Mbit and 512Mbit
EPROMs. When using a 512Mbit (64k*8) EPROM J3 is used for selecting the
upper or lower 32k of the EPROM. This way two different programs can be stored
in one EPROM, accessed by turning off and switching.

All 32 pins of the GEC are also available on a standard 2x17-pin connector on the
adapter board. The idea of the adapter was to create an easy way to connect
further circuitry to the Game Boy . An EPROM can also be mounted on the board
if required. The capacitor provides for ripple and spike supression and should

© 'The Game Boy Group' Page 15

FH KARLSRUHE - UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF SENSOR SYSTEMS TECHNOLOGY

'THE GAME BOY PROJECT'

Figure 5: Board layout for the GB-Adapter

have a value of around 100nF (C1). The board used is a single sided
60mm*110mm board. Figure 5 shows the board layout. To download the ready to
etch layout plans see appendix 5.2.1'Layouts'. Note that the view is from the
component side of the board through to the solder side.
The connector J2 may be used as an expansion slot for further applications.
Pin 1 & 2 of J1 (=J1.1 & J1.2) are connected to pin 1 of the GEC (= J2.1). Pin
J1.3 goes to J2.2, J1.4 to J2.3 and so on (See Figure 4). The /WR of the GEC is
not routed to the EPROM but to A15 to disconnect the EPROM from the data bus
while not in use.

Figure 6: GB Adapter J1 pinout

© 'The Game Boy Group' Page 16

FH KARLSRUHE - UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF SENSOR SYSTEMS TECHNOLOGY

'THE GAME BOY PROJECT'

3.2. THE 8255A PI/O - CHIP

"The 82C55A is a high performance CMOS version of the industry standard
8255A. It is a general purpose programmable I/O device which may be used with
many different microprocessors. There are 24 I/O pins which may be individually
programmed in 2 groups of 12 and used in 3 major modes of operation. The high
performance and industry standard configuration of the 82C55A make it
compatible with the 80C86, 80C88 and other microprocessors. Static CMOS
circuit design ensures low operating power. TTL compatibility over the full
military temperature range and bus hold circuitry eliminate the need for pull-up
resistors"8.

A block diagram of the 8255 is
shown in Figure 7. The device
comprises three 8 bit ports
whereby port c can be sub-
divided into two 4 bit groups.
Each of these three ports is
addressed by A0 and A1 . With
it‘s read, write, the chip select
and data signals it looks and
behaves like a tiny ROM or a
RAM with only three bytes. To
switch between 'RAM-' and
'ROM-mode' the 8255 has a
mode register where three
working modes can be selected. The mode register is selected when A0 and A1 are
set to high (+5V).

The three modes are:

p Mode 0: basic input / output
p Mode 1: strobed input / output

p Mode 2: bi-directional bus

For our purpose only mode 0 was interesting, but the device may be switched into
each with the setup supplied in this document. To work with the three ports they
must first be initialized. This is done by writing the proper control word into the
control register. Figure 8 shows the definition of the control word. While bit D2,

8 From: HARRIS Semiconductor, data sheet on 82C55A [3]

© 'The Game Boy Group' Page 17

Figure 7: Block diagram of a 82C55A

FH KARLSRUHE - UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF SENSOR SYSTEMS TECHNOLOGY

'THE GAME BOY PROJECT'

D5, D6 and D7 define mode 0..2
the bits D0, D1, D3 and D4 define
the settings of the ports to input- or
output-mode. In other words you
need to 'program' or switch the
82C55 every time you want to
change a port data flow direction.
If 'all input mode' in mode 0 is
requested the control word would
be 10011011bin = 9Bhex =
155dec. If 'all output mode' in
mode 0 shall be selected the
control word would be
10000000bin = 80hex = 128dec.

For further information on the
82C55A and it‘s capabilities see the
PDF-document (on local server).

© 'The Game Boy Group' Page 18

Figure 8: The control word for port definition

FH KARLSRUHE - UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF SENSOR SYSTEMS TECHNOLOGY

'THE GAME BOY PROJECT'

3.3. HOW TO GET THE RIGHT HARDWARE ADDRESS

Figure 9: Wiring diagram for the device switching logic

This section describes how to combine to combine the 8255 with an EPROM so
that the three ports of the 8255 will be mapped from 7FF8h to 7FFAh and the
mode register to 7FFFh. This requires logic to provide address decoding for each
device. This can be easily realized with the circuit shown in Figure 9.

Description:

The 74HC30 and the 74HC138 are used as NANDs to decode the state whereby
all the address lines A3..A14 are high and A15 is low. This will result in a low at
/EN (Y7 of 74HC138). This state occurs when the Game Boy is accessing the
address area 7FF8h to 7FFFh /EN can be wired to /CS of the 8255 and when low
will activate the RD/WR-control logic of the 8255.
The ROM on the other side requires the inverted impulse (EN). This is generated
by an inverter in the 74HC04. This signal is then ORed with A15 to make sure that
the EPROM is off when the Game Boy accesses an address over 7FFFh. The last
step is inverting /Rst of the Game Boy to provide a reset for the 8255.

© 'The Game Boy Group' Page 19

FH KARLSRUHE - UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF SENSOR SYSTEMS TECHNOLOGY

'THE GAME BOY PROJECT'

3.4. THE GB-I/O INTERFACE BOARD

In principal the GB-I/O interface board is functionally the same as the circuit
diagram shown in Figure 9. We just realized the logic in full-NOR-technology to
reduce the IC count. In doing this we eliminated the 74HC04 and the 74HC32 and
put in a 74HC04. Components used:

Part Description Part Description

U2 Harris 82C55A (DIP) J1 Header 34 pin (2.54mm grid)

U3 74HC00 (DIP) J3 Jumper

U4 74HC138 (DIP) C1 Capacitor (100nF)

U5 74HC30 (DIP) Cx 5 * Capacitor for each IC
between Vcc/Gnd

U6 NM27C512Q120 (DIP)
(='EPROM 64k+8)

board double sided 100 mm * 160
mm

Table 3: Parts for the GB-I/O interface board

Figure 10 shows the pinout of the 34pin header J1 of the GB PI/O interface board.
The purpose of the header is to allow expansion for further devices. Vcc, ground,
clock, U3 chip select and the three ports are available on the header.

Figure 10: PI/O-Board J1 pinout

Figure 17 displays the board layout. To download the ready to etch layout plans
see appendix 5.2.1'Layouts'. Note that the board is viewed from the component
side through the board to the solder side (see next page).

© 'The Game Boy Group' Page 20

FH KARLSRUHE - UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF SENSOR SYSTEMS TECHNOLOGY

'THE GAME BOY PROJECT'

Figure 17: GB-I/O interface board layout

© 'The Game Boy Group' Page 21

FH KARLSRUHE - UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF SENSOR SYSTEMS TECHNOLOGY

'THE GAME BOY PROJECT'

4. CREATING THE SOFTWARE

There are several tools to write programs in different languages for the Game Boy
and all are freeware for noncomercial use. There are a Basic-interpreter, a C-
compiler and different assemblers online. A set of software tools for a development
kit shall be described in this section. These are only some of the tools available, and
they might not be the best to work with. However, the internet grows and there are
more to come.

4.1. SOFTWARE (DEVELOPMENT) TOOLS

This chapter contains information on software development tools for emulating
and testing purpose. The tools listed here can be understood as a basic set of tools
to develop applications for the GB-PI/O board, but also for general GB programs.

4.1.1. GBBASIC

'Game Boy Basic' is an online basic interpreter written by Jeff Frohwein [1]. This
makes it a very handy tool when testing the GB-PI/O board or any other hardware
setup. You can use it for example to set the 8255 command register or to read or
from or write to the ports. The software comes as ready compiled binary
(gbbasic.gb) and can be downloaded from the local server (see 5.2.2'Software
tools').

4.1.2. GBDK

The ‚Game Boy Development Kit‘ [4] includes an ANSI C based and a TASM
based compiler, linker and builder. It is available for DOS and Unix (Linux).
GBDK consists of a command line accessed compiler which compiles .c and *.s
files to GB ROM images (.gb). As usual for C, it is possible to include assembler
routines in the C source code. GBDK was written by Pascal Felber and has it‘s
own web page [4]. Although there are other Z80 based assemblers optimized for
the Game Boy, GBDK is one of the most powerful packages available and will let
you easily write your own complex programs in C or ASM.

© 'The Game Boy Group' Page 22

FH KARLSRUHE - UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF SENSOR SYSTEMS TECHNOLOGY

'THE GAME BOY PROJECT'

4.1.3. GBDEV STUDIO

The ‚Game Boy Development Studio‘ [5] is a Windows 9x frontend for GBDK. It
is mainly a text editor with a C syntax checker to make your source code better
readable. The buttons in the editor can be set to special command line functions.
By this it is possible for example that the ‚compile‘-button lets GBDK compiles
your source or the ‚execute‘-button passes the compiled ROM image to an
emulator.

4.1.4. NO$GMB

Although there are a couple of Game Boy emulators available in the internet, the
‚Nocash Game Boy Emulator‘ [6] is the mightiest emulator we‘ve come accross
when it goes to software development. NO$GMB (by Martin Korth) features
executing code, tracing through code, setting breakpoints and more. It works
togethet with the *.sym file which GBDK automatically produces (GBDK version
2.0.15 and higher). This debuging features will be a good help when making your
own software.

4.1.5. GBTD & GBMB

These are two also very handy tools when you are building you own screen data
for the Game Boy. ‚Game boy Tile Designer‘ and ‚Game Boy Map Builder‘ [7]
by Harry Mulder are Windows 9x programs that help you designing your own
maps and tiles. The output can be included in either C or ASM images.

© 'The Game Boy Group' Page 23

FH KARLSRUHE - UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF SENSOR SYSTEMS TECHNOLOGY

'THE GAME BOY PROJECT'

4.2. FIRST STEPS USING GB-BASIC

After the hardware had been built the functionality should be checked. An easy
way of doing this is to write a short GB-Basic program. This requires an EPROM
with the latest version of Jeff‘s GB-Basic [2] in it. After pluging in the EPROM
and switching on the GB the ‚Nintendo‘ start screen should appear. If the screen is
blank or ‚snow‘, stripes appear on the screen the hardware should be checked.
 Begin with a check of the EPROM (Programmers can read out the ROM‘s and
cross check it with the source file), then re-check the layout. If GB-Basic is up and
running you‘re more than half way home!

Figure 18: GBBasic accessing the 82C55A

To check the 82C55 requires access to the 82C55 at the hardware addresses
7FF8h to 7FFFh. This can be achieved by reading and writing to these addresses
using the Basic commands peek and poke.
To output a bit combination at a port simply write it with 'poke <port-adr> <value-
to-write>. To read a bit combination from a port use 'peek <port-adr>'. TO display
the returned value on screen use 'print peek <value>'. The address and value can be
in decimal or hex (put a 'h' behind the value then). Don't forget that the ports of the
82C55 have to be set to either input or output mode before reading or writing
data. This is done by writing the control word to 7FFFh (the control register) - see
paragraph 3.2.
To generate a bit combination for testing use pull up or pull down resistors of

aproximately 5kΩ. Note that the driver capacitiy of the 82C55A is limited. To
drive an LED for example requires an additional transistor.

© 'The Game Boy Group' Page 24

FH KARLSRUHE - UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF SENSOR SYSTEMS TECHNOLOGY

'THE GAME BOY PROJECT'

4.3. THE PROGRAM

Figure 19: Screen shot of the testing program

A testing program was written in assembler using the GBDK [4] assembler. The
functionality is limited to setting and resetting single bits on the different ports. A
port read option with screen output is integrated. A simple basic program would
have done the same, but the use of assembler offered the opportunity of learning
how to use the compiler. The source code is well documented on a line by line
basis. Figure 19 shows a screen shot of the program. ‚EINGANG‘ shows the
actual settings od port a,b,c. ‚AUSGANG‘ shows the output status of each port.
Move the cursor up down to switch between input and output mode. In output
mode (‘AUSGANG‘) move the cursor left to increase the output on a binary basis;
move the cursor right to decrease. Port b does a ‚invert‘ of the bits every cycle,
while port c does a shift right of one bit. The GB ROM image of the program
(steffen.gb) can be found under appendix 5.2.2‘Software tools‘. Use the NO$GMB
emulator [6] to trace through the program and see it‘s documented source.

© 'The Game Boy Group' Page 25

FH KARLSRUHE - UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF SENSOR SYSTEMS TECHNOLOGY

'THE GAME BOY PROJECT'

5. APPENDIX

5.1. REFERENCES

[1] gbspec.txt, also called the ‚PAN Document‘.
http://www.fh-karlsruhe.de/fbnw/html/Gameboy/Docs/gbspec.txt

[2] GBBasic, Jeff Frohwein‘s ‚Game Boy Technikal Central‘.
http://fly.hiwaay.net/~jfrohwei/gameboy/

[3] HARRISTM 82C55A CMOS Programmable Peripheral Interface.
http://www.fh-
karlsruhe.de/fbnw/html/Gameboy/downloads/hardware/Harris_82C55.pdf

[4] GBDK, 'Game Boy Development Kit' by Pascal Felber.
http://lsewww.epfl.ch/~felber/GBDK/

[5] Gbdevkit, 'Game Boy Development Studio' by 'AXIS DESIGN'
http://www.geocities.com/Eureka/9827/

[6] NO$GMB emulator by Martin Korth.
http://www.work.de/nocash/

[7] GBTD, GBMB, 'Game boy Tile Designer' and 'Game Boy Map Builder'
by Harry Mulder.
http://www.casema.net/~hpmulder

[8] PADS Inc., Software company with a high end PCB layouting program
called 'PADS', http://www.pads.com/

[9] CADSOFT, Software company with a high end PCB layouting program
called 'EAGLE', http://www.cadsoft.de

5.2. DOWNLOADS

5.2.1. LAYOUTS

In this chapter you will find everything you can find on the site itself to download.
You will find different file formats for every project part. The files declared as Pads
files are the files generated with the Pads 2.0 demo of Pads Inc. [8]. Unfortunately
it is not possible to download the demo but you will find a site at your local Pads
distributor to get a demo CD shipped to you. The ‚ps‘ files are postscript files -
best accessed with GhostView. The ‚pdf‘ files are files for Adobes Acrobat‘s
reader.

The SMD Version is only a development preview. It was designed with the Eagle

© 'The Game Boy Group' Page 26

FH KARLSRUHE - UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF SENSOR SYSTEMS TECHNOLOGY

'THE GAME BOY PROJECT'

3.55 [9] freeware which can be downloaded at the distributors site. The freeware is
fully functional for one schematic sheet and a board size of 80mm x 100mm. I
strongly recommend this for your own development, because of the easy handling
and the integrated autorouter. The librarys can also be found here.

Files Description

gb_adap.zip Pads files for the Game Boy Adapter (only layout yet)
http://www.fh-karlsruhe.de/fbnw/html/Gameboy/downloads/gb_adap.zip

adap_ps.zip layout for the GB-Adapter in postscript format
http://www.fh-karlsruhe.de/fbnw/html/Gameboy/downloads/adap_ps.zip

adap_pdf.zip layout for the GB-Adapter in Adobe Acrobat format
http://www.fh-karlsruhe.de/fbnw/html/Gameboy/downloads/adap_pdf.zip

gb_pio.zip PADS [8] files for the PIO board (layout)
http://www.fh-karlsruhe.de/fbnw/html/Gameboy/downloads/gb_pio.zip

pio_ps.zip layout for the PIO board in postscript format
http://www.fh-karlsruhe.de/fbnw/html/Gameboy/downloads/pio_ps.zip

pio_pdf.zip layout for the PIO board in Adobe Acrobat format
http://www.fh-karlsruhe.de/fbnw/html/Gameboy/downloads/pio_pdf.zip

pio_smd.zip Preview of the PIO-SMD version designed with EAGLE [9]
http://www.fh-karlsruhe.de/fbnw/html/Gameboy/downloads/pio_smd.zip

lib.zip PADS [8] 'user' library with the parts used in the PCBs (e.g. the
Gamepack Edge Connector GEC)
http://www.fh-karlsruhe.de/fbnw/html/Gameboy/downloads/lib.zip

prj_all.zip all the PADS [8] files above
http://www.fh-karlsruhe.de/fbnw/html/Gameboy/downloads/prj_all.zip

gb_lbr.zip EAGLE 3.55 [9] library for Game Boy parts (GEC, etc)
http://www.fh-karlsruhe.de/fbnw/html/Gameboy/downloads/prj_all.zip

5.2.2. SOFTWARE TOOLS

These files can be found on the local server but might not be up to date.

Files Description

bbb122.zip Online basic interpreter to test your board
www.fh-karlsruhe.de/fbnw/html/Gameboy/downloads/software/gbb122.zip

Steffen.zip The asm program Steffen wrote for testing the board
http://www.fh-karlsruhe.de/fbnw/html/Gameboy/downloads/steffen.zip

© 'The Game Boy Group' Page 27

